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Econometrica, Vol. 30, No. 3 (July, 1962) 

UTILITY THEORY WITHOUT THE COMPLETENESS AXIOM 

BY ROBERT J. AUMANN 

A utility theory is developed that parallels the von Neumann-Morgenstern 
utility theory, but makes no use of the assumption that preferences are com- 
plete (i.e., that any two alternatives are comparable). 

1. INTRODUCTION 

BEFORE STARTING out on an exposition of utility theory without the com- 
pleteness axiom, let us briefly review the contents of utility theory with the 
completeness axiom-the by now classical utility theory of von Neumann 
and Morgenstern [8]. This begins with an individual, a set A of "basic 
alternatives" (or "pure prospects" or "pure outcomes") and the set of all 
lotteries' whose prizes are basic alternatives from A. On this set of lotteries 
there is defined a preference order, representing the preferences of the in- 
dividual in question; this preference order is assumed to obey certain 
axioms.2 The basic theorem of utility theory asserts that there then exists 
a real-valued function u on the set of all lotteries,3 called a utility function, 
which enjoys the following properties: 

(a) u represents the preference order, in the sense that a lottery x is 
preferred to a lottery y if and only if u(x) > u(y); and 

(b) u obeys the "expected utility hypothesis",4 according to which the 
utility of a lottery is equal to the expected utility of its prizes (for a precise 
statement see (2.1)). 
Furthermore, the u satisfying (a) and (b) is uniquely determined up to an 
additive and a positive multiplicative constant. 

Several of the axioms that govern the preference order in the von Neumann- 
Morgenstern theory have been questioned, mainly from the viewpoint of 
their validity as descriptions of real-life behavior.5 Some authors have 

1 By a "lottery" we mean a situation in which a basic alternative is chosen by 
means of a random device with known probabilities; technically, it is a random 
variable with values in A. An inventory policy is an example of a lottery. In a two- 
person game, a pair of mixed strategies determines a "mixed outcome," i.e., a lottery 
on the outcomes that can actually occur when the game is played. 

2 For a list of the axioms see [8, p. 26]. Different but equivalent systems of axioms 
have been given by Herstein and Milnor [4], Marschak [7], and Luce and Raiffa [5, 
pp. 25-28]. 

3 Which, of course, includes the basic alternatives, since all but one of the basic 
alternatives can be assigned probability 0. 

4 This is a misnomer; the expected utility hypothesis is not a hypothesis at all, but 
a theorem. "Expected utility property" would be more accurate. 

5 For an excellent discussion see [5, pp. 25-29]. 

445 
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446 ROBERT J. AUMANN 

examined the consequences of dropping or modifying one or another of 
these axioms. For example, Hausner's multi-dimensional utilities [3] result 
from dropping the so-called continuity axiom. We are concerned here with 
another one of the axioms, the completeness axiom. This axiom says that 
given any pair of lotteries, the individual either prefers one to the other or is 
indifferent between them. It specifically excludes the possibility that an 
individual may be willing and able to arrive at preference decisions only 
for certain pairs of lotteries, while for others he may be unwilling or unable 
to arrive at a decision;6 in mathematical phraseology, the preference order 
is assumed to be complete.7 It is the purpose of this paper to present a varia- 
tion of the von Neumann-Morgenstern theory which makes no use of the 
completeness axiom. This is the only essential difference between our axioms 
and those of von Neumann and Morgenstern. 

Of all the axioms of utility theory, the completeness axiom is perhaps the 
most questionable.8 Like others of the axioms, it is inaccurate as a descrip- 
tion of real life; but unlike them, we find it hard to accept even from the 
normative viewpoint. Does "rationality" demand that an individual make 
definite preference comparisons between all possible lotteries (even on a 
limited set of basic alternatives)? For example, certain decisions that our 
individual is asked to make might involve highly hypothetical situations, 
which he will never face in real life; he might feel that he cannot reach an 
"honest" decision in such cases. Other decision problems might be extremely 
complex, too complex for intuitive "insight," and our individual might 
prefer to make no decision at all in these problems.9 Or he might be willing 
to make rough preference statements such as, "I prefer a cup of cocoa to a 
75-25 lottery of coffee and tea, but reverse my preference if the ratio is 
25-75"; but he might be unwilling to fix the break-even point between 
coffee-tea lotteries and cocoa any more precisely.l1 Is it "rational" to force 
decisions in such cases? 

6 Indifference between two alternatives should not be confused with incomparability; 
the former involves a positive decision that it is immaterial whether the one or the 
other alternative is chosen, whereas the latter means that no decision is reached. 

7 "Total," "connected," and "linear" are sometimes used synonymously. 
8 It should be noted that it is also assumed in the non-numerical indifference curve 

approach to utility. 
9 Cf. Section 5. 
10 Utility theory is sometimes compared to physics, and it is asserted that the 

phenomenon described above is nothing but a "limitation of discriminatory capacity" 
which "cannot be any more serious as an objection to the . .. theory than it would be 
in the theory of physical measurement " [10, p. 182]. We feel that there is, after all, quite a 
difference in the magnitude of the effects, and that economic theory might be better 
served if the quite considerable "limitation of discriminatory capacity" would be 
explicitly recognized. 
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UTILITY THEORY 447 

Other authors have also expressed reservations about the completeness 
axiom. In discussing observed intransitivities in experimental work on 
utility theory, Luce and Raiffa mention the possibility of intransitivities 
occurring "when a subject forces choices between inherently incomparable 
alternatives" [5, p. 25]. Thrall has observed that "from the practical point 
of view, if the number of judgments needed is finite but large, there is still 
the time difficulty. By the time the judge has reached the 1,000,000-th 
choice, his standards of comparison are almost certainly not the same as 
initially. The theory calls for instantaneous and simultaneous judgments 
between all pairs . . ." [10, p. 183]. Shapley has remarked that "the payoff 
of a game sometimes most naturally takes the form of a vectorhaving numeri- 
cal components (such as men, ships, money, etc.) whose relative values 
cannot be ascertained. The utility spaces of the players can therefore be 
given only a partial ordering. . ." [9, p. 58]. 11 In a different context, 
Shapley has pointed out that partial preference orderings are "useful for 
describing the preferences of groups, since they enable one to distinguish 
clearly between indecision and indifference."12 Finally, von Neumann and 
Morgenstern themselves say of the completeness axiom that "it is very 
dubious, whether the idealization of reality which treats this postulate as a 
valid one, is appropriate or even convenient." [8, p. 630]. 

Fortunately, it turns out that much of utility theory stays intact even 
when the completeness axiom is dropped. However, there is a price to pay. 
We still get a utility function u that satisfies the expected utility hypothesis 
(item (b) above); and u still "represents" the preference order (item (a) 
above), but now in a weaker sense: as before, if x is preferred to y then 
u(x) > u(y), but the opposite implication is no longer true. Indeed, since the 
real numbers are completely ordered and our lottery space is only partially 

11 Shapley's work in [9] was originally motivated by an attempt "to analyze a 
combat situation in which movement of forces and the inhibition of such movement 
were critical. It turned out to be feasible to represent essential aspects of this situation 
by a game-like model with reasonably well defined courses of action corresponding to 
pure strategies for each side. However, each pair of these strategies, one for each 
player, generated both a time delay in the movement and losses to the moving forces.... 
Efforts to obtain estimates of an exchange ratio between attrition and delay failed 
completely...." (The quotation is from an introductory note to [9] by F. D. Rigby, and 
has been slightly rearranged in the process of condensation). Similar situations abound 
in economics; examples are problems involving goodwill and immediate profit, or 
those faced by a division manager who must consider both the income of his division 
and that of the whole corporation. [9] is closely related to this paper, and we shall 
refer to it repeatedly in the sequel. 

12 From an unpublished abstract of a talk given at the Stanford Symposium 
on mathematical methods in the Social Sciences, June 1959. 
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448 ROBERT J. AUMANN 

ordered, the opposite implication could not possibly be true. Furthermore, 
we no longer have uniqueness of the utility.13 

In spite of these differences, our utility retains many of the useful pro- 
perties of the von Neumann-Morgenstern utility. For example, we can solve 
maximization problems with it: Maximization of our utility over a given 
constraint set will always lead to a maximall4 element of the constraint set; 
conversely, for every maximal element x there is a utility whose maximiza- 
tion leads to x. Following up the idea used by Shapley in [9], we can even 
set up a theory of games in which the mixed outcomes to an individual player 
are only partially ordered. Just as ordinary utilities are used to give a 
numerical treatment of games in which the mixed outcomes are totally 
ordered (for each individual player), we will be able to use our "one-way" 
utilities to give a numerical treatment of such partially ordered games. In 
fact we will be able to "solve" these games in a manner analogous to the 
completely ordered case-obtaining an analogue of saddle points for zero- 
sum games, and of Nash equilibrium points [6] for general games. 

There is another significant point of similarity with the von Neumann- 
Morgenstern theory. The representation property of the utility function 
-item (a) above-can be restated as follows: Given the utility function, 
we can find the preference order. As we remarked above, this is no longer 
true in our partially ordered situation, as long as we restrict ourselves to a 
single utility function. However, under fairly wide circumstances (but not 
always) we can say the following: Given the set of all utility functions,15 we 
can find the preference order. For example, this is true if we know a priori 
that the preference order is "finitely generated," i.e., consists of a finite num- 
ber of "basic" preference statements plus all those statements that follow 
from these "basic" ones by application of the axioms. 

We remark that the present theory is a genuine generalization of the von 
Neumann-Morgenstern theory, in the sense that in case the space of lotteries 
does happen to be completely ordered, our utilities are the same as the von 
Neumann-Morgenstern utilities. 

Historically, the first mention of the possibility of a utility theory without 
the completeness axiom was by von Neumann and Morgenstern: "If the 
general comparability assumption is not made, a mathematical theory ... 
is still possible. It leads to what may be described as a many-dimensional 

13 This too is clear: if for example our partial order makes any two lotteries in- 
comparable, then an arbitrary function on the basic alternatives will yield a utility 
(if the utility of a lottery is defined via the expected utility hypothesis). 

14 I.e., an element to which no other element in the constraint set is preferred. We 
cannot expect to get a maximum element-i.e., an element preferred or indifferent to 
all others in the constraint set-because such an element may not exist. 

15 Recall that the utility function is in no sense unique. 
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UTILITY THEORY 449 

vector concept of utility. This is a more complicated and less satisfactory 
set-up, but we do not propose to treat it systematically at this time" 
[8, p. 29]. Details were never published. What they probably had in mind 
was some kind of mapping from the space of lotteries to a canonical partially 
ordered euclidean space, rather than the real-valued mappings we use here; 
but it is not clear to me how this approach can be worked out. The multidi- 
mensional utility of Hausner [3], which is a mapping into a completely 
ordered euclidean space, has nothing to do with this. 

More recently Shapley has discussed the same problem in an as yet 
unpublished manuscript, using an approach basically similar to the present 
one.'6 Shapley's work and ours are entirely independent. 

We have made an attempt to concentrate the less technical part of the 
paper in the first five sections; the remaining sections become progressively 
more technical. All proofs are left to the last section. 

1. THE AXIOMS 

The space on which the utility will be defined is called a mixture space: 
intuitively, this may be thought of as the space of lotteries that we discussed 
above. Formally, it is a space X with a convex structure; that is, if {yl,..., yik} 

is a set of probabilities (i.e., yi > 0, yi 1), and if xl., xk E X, then 
there is defined in X the convex combination EzkL yix. One operates with 
these combinations in all ways as if they were ordinary vector-space sums, 
keeping in mind only that the coefficients must always be nonnegative and 
sum to unity.17 A set {xl, ..., xk} of members of X is said to be independent if 
no two distinct combinations of the xi are equal, and a maximal independent 
subset of X is said to s.pan X. We shall assume in the sequel that X has a 
finite spanning subset, or in other words that it is finite dimensional. In 
particular, this condition will always be satisfied when there are only a 
finite number of basic alternatives. 

We assume that on our mixture space X there is defined a transitive and 
reflexive relation called pireference-or-indifference and denoted by >-. If 
x e y and y e_ x we shall say that x is indifferent to y and write x y; if 
x e y but not x y, we shall say that x is ireferred to y and write x >- y. 
We assume that the following conditions hold: 

(1.1) if 0 < y < 1 and z is arbitrary, then x k y if and only if 
yx? (1 -y)z >yy + (1 -y)z; 

(1.2) if yx + ( y)y >- z for ally > 0, then not z >- y. 
Axiom (1.2) is the "archimidean" or "continuity" axiom. 

16 See footnote 12. 
17 For a set of formal axioms for a mixture space, see [3, p. 169]. The treatment here 

is similar to that of [5]. 
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450 ROBERT J. AUMANN 

The relation >. will be called a partial order; the space together with the 
partial order >- will be called a partially ordered mixture space. The symbol 
X (and occasionally Y) wiLl denote a partially ordered mixture space, but 
may sometimes also be used to denote the underlying (unordered) mixture 
space; no confusion will result. 

2. THE UTILITY 

A utility on a partially ordered mixture space X is a function from X 
to the reals for which 

(2.1) u(yx +( y)y) ) yu(x) +(1 - y)u(y), 
(2.2) x >- y implies u(x) > u(y), 

(2.3) x y implies u(x) = u(y) . 

Condition (2.1) is the familiar "expected utility hypothesis," whereas (2.2) 
and (2.3) state that u represents the preference order 

Our basic result is: 

THEOREm A: There is at least one utility on X. 

3. TWO EXAMPLES 

An example of a mixture space is the Eucidean n-space Rn, considered 
as a vector space over the real numbers. Two of the partial orders most 
frequently encountered in the literature are the weak and the strong partial 
orders on Rn, which we denote by >-, and >- s respectively. Using subscripts 
to denote coordinates, we write x >-, y if xi > yi for all i; we write x >.s y 
if xi ? yi for all i, but x # y.18 Both orders satisfy all assumptions of the 
previous section; they are also both pure, i.e., indifference holds only in the 
case of equality. If we normalize the utilities by setting u(0) = 0, then the 
utilities for >-, are of the form u(x) = unx, where (ul, ..., u.) >-w 0; 
the utilities for >-w are of the same form, except that now we need only have 

(Uj, ...J u n) >-8 0. 

4. DISCUSSION OF THE AXIOMS 

(a) We first clear up a point which we glossed over in the introduction, 
in the interests of brevity and simplicity. The lotteries that are the objects 
of study in utility theory may have other lotteries as well as basic alternatives 

18 The terminology may sound reversed to the reader, but it has some justification. 
One partial order is stronger than another if it has more relations; we consider a total 
order stronger than a partial one. 
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UTILITY THEORY 451 

for their prizes. Lotteries that have other lotteries for their prizes are 
called compound; those that have only basic alternatives as prizes are called 
simple. Every compound lottery is "equivalent" to a simple one; for if one 
plays out the component lotteries one must eventually get to basic alterna- 
tives. This is the equivalence that is asserted by the familiar "algebra-of- 
combining" axiom in the von Neumann-Morgenstern theory. 

In our formulation, the algebra-of-combining axiom is part of the defini- 
tion of mixture space as given in Section 1. The mixture space X can be 
thought of as consisting of all formal convex combinations of the basic 
alternatives, where each convex combination represents not only the appro- 
priate simple lottery, but also all compound lotteries equivalent to it. 

(b) If we interpret X as in the previous paragraph, then the finite dimen- 
sionality condition demands that there be only finitely many basic alter- 
natives. There are, however, situations in which it is convenient to work 
with a model in which certain parameters (such as money) take a continuum 
of values.19 In such situations we may still be able to obtain a finite dimen- 
sional mixture space, by dividing out the indifference relation. The resulting 
space, though finite dimensional, may not be finitely generated (in the sense 
that it is the convex hull20 of finitely many points); for example, the real 
line (or any open interval on it) is not finitely generated. 

The finite dimensionality assumption is very broad; it would be hard to 
imagine an economic application of utility theory which would require an 
infinite dimensional mixture space even after the indifference relation is 
divided out. Formally, however, this assumption cannot be dropped. For 
an example of an infinite-dimensional partially ordered mixture space 
without a utility, see Section 8. 

(c) Axiom 1.1 is taken from Hausner's set of axioms [3, p. 174, W2 and 
W3]. It asserts that a preference is not changed by "dilution," and conversely 
that if we have a diluted preference, then the corresponding undiluted 
preference also holds. 

(d) Axiom 1.2 is an extremely weak version of the "archimidean" or 
"continuity" principle; it is weaker than any variant I have seen. It serves 
only to exclude the case in which the direction of strict preference between a 
point z and a closed line segment [xy] goes in one direction for one of the 
end-points y and in precisely the opposite direction for the entire remainder 
of the segment. Two cases which are not excluded are illustrated by the 
weak and the strong orders respectively (Figure 1). 
Here y and z are on the same horizontal line. For both orders all points in 

19 Usually only finitely many values are actually possible, but the continuous model 
is often a useful approximation (for example, if one wants to differentiate with respect 
to price). A similar situation holds in many branches of Physics. 

20 The convex hull of a set D is the set of all convex combinations of members of D. 
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452 ROBERT J. AUMANN 

the half-open2' segment [xy) are preferred to z; the difference between the 
two orders is expressed in the relation between z and the end-point y. For 
the weak order y and z are incomparable, and for the strong order y is 
preferred to z; in neither case, though, is z actually preferred to y. It can 
also happen that all points in [xy) are preferred to z, while y and z are 
indifferent (not pictured). 

x 

.z g 

FIGURE 1. 

It has been suggested that (1.2) could be slightly weakened, say by 
making it read 

(4.1) if yx+ (1 -y)z>-yforall y >0, thenz>-y. 

(4.1) is equivalent to the assertion that for all x, y, and z, the set {y: yx + 
(1 - y)z ? y} is closed; it is the form of the archimidean axiom used by 
Herstein and Milnor [4]. The adoption of (4.1) would considerably simplify 
the proof of the existence of a utility (Theorem A); it is claimed that this 
simplification would more than make up for the slight loss in intuitive plausi- 
bility. But the fact is that there is not only a loss in intuitive plausibility, there 
is also a quite significant loss in generality; for example, (4.1) excludes the 
weak order, which has considerable intuitive appeal in some situations and 
occurs often in the literature. If we had the completeness axiom, there would 
be no loss of generality at all, and one would then be tempted to use the 
axiom which makes for the simplest proof; but here, where many cases of 
interest would be excluded, it is worth a little extra trouble to prove the most 
general theorem we can. Another point is that (4.1) is no more plausible 
than the assertion that {y: yx + (1 - y)z >- y} is open,22 or equivalently 
that 

(4.2) yox + (1 - yo)z >- y implies that for all y sufficiently close to yo, 
yx + (1- Y)z >-y. 

21 I.e., the segment [xy] without the point y. 
22 In the topology of the unit interval. 

This content downloaded from 198.105.44.150 on Sun, 1 Dec 2013 15:12:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


UTILITY THEORY 453 

(4.1) and (4.2) are equally plausible versions of "continuity of preference," 
and there is no reason to prefer one over the other. For example, whereas 
(4.1) excludes the weak order, (4.2) excludes the strong order; and when 
there is completeness, the two are equivalent. But if we were to assume both 
(4.1) and (4.2), then we would be excluding not only some but almost all 
cases of interest. In fact all that would be left would be orders that are 
"degenerate," by which we mean orders in which comparability is an 
equivalence relation.23 Under these circumstances we prefer the weaker and 
much more general (1.2). 

In practice the effect of (1.2) is to exclude the lexicographic order24 and 
other orders inspired by the lexicographic order. We remark that if we drop 
(1.2) we can still build a utility theory, but the values of the utility functions 
will be points in a lexicographically ordered euclidean space rather than 
real numbers; this generalization of the present theory is analogous to 
Hausner's generalization [3] of the von Neumann-Morgenstem theory. It 
will still be possible to solve maximization problems and games under 
exactly the same conditions as before (compare [10]).25 

5. MAXIMIZATION PROBLEMS, GAMES, AND SHAPLEY S THEOREM 

The convex hull of a finite set of points in X is called a convex polyhedron. 

THEOREM B: Let E be a convex polyhedron in X, and let x e E. Then x is 
maximal in E under the partial order >_ ,if and only if there is a utility u on X 
such that x maximizes u over E. 

23 When the underlying mixture space of a degenerate space X is Rn, then X is 
the direct sum of two linear subspaces Y and Z, such that two elements of X are 
comparable if and only if they have the same z-component. Thus X is "decomposable" 
into Y, which is completely ordered, and Z, which is not ordered at all. For yet another 
characterization of degenerate spaces see Section 6. 

24 The lexicographic order on R2 is the pure order for which x >- y if and only if: 
either xi > yL, or xil = yL and x2 > Y2. The definition may be generalized to Rn. 

25 I personally believe the archimidean principle to be verycompelling,notwith- 
standing some of the counter-intuitive examples that have been offered in the litera- 
ture. For example, it is sometimes argued that a trivial prize such as two pins may not 
be worth any probability of death, no matter how small. But many people drive 
their cars every day for, say, $50, although they know that this involves a positive 
probability of death; and by using postulates of utility theory other than the archi- 
midean principle, one can convince oneself that $50 is "comparable" to two pins (by 
going up a pin at a time, say). The counter-intuitive flavor of the example may be 
traceable to aspects of the preference axioms other than the archimidean principle; 
for example, the idealization that asserts the ability to differentiate between probabili- 
ty combinations that are very close to each other may be involved. In spite of all this, 
there may certainly be situations in which the lexicographic order or something 
similai constitutes the most convenient model, so it is desirable to have a theory that 
covers it. (I am indebted to A. Brand for this argument.) 
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454 ROBERT J. AUMANN 

As a typical practical example of the application of Theorem B to an 
optimization problem, suppose a commanding officer is given a budget, and 
is asked to decide on an inventory policy for a certain set of military spare 
parts; say there are hundreds of different kinds of parts involved. The 
officer is willing to express preferences as between policies each involving 
at most two or three spare parts (though such policies are obviously not 
optimal); but "realistic" policies-those involving all or most of the parts- 
are usually by far too complex to be meaningfully compared. Nevertheless 
some comparisons between complex plans can be made, namely those 
"generated" by the simpler comparisons via transitivity and condition 1.1; 
the problem becomes one of choosing an inventory policy which is best 
possible in the sense that no other policy (within the budget) is preferred 
to it in the preference order P that is generated by the "simpler" compari- 
sons, which the officer is willing to make. Theorem B says that such a 
"best possible" policy can be obtained by maximizing a utility for the 
preference order P over the constraint set, and in fact that every such 
policy can be obtained in this way.26 This approach is not limited to 
military problems, but applies to any inventory problem in which direct 
measurements of utility are difficult or impossible to make. 

What Theorem B does for maximization problems defined on the partially 
ordered space X can also be done for two-person zero-sum games played 
over X. These games are similar to ordinary matrix games in all respects, 
except that the payoffs are in X rather than being real numbers. As usual, 
the two players each have a finite set of pure strategies, denoted by 

(Pli, ..., pk), (ql, .*., ql); there is a payoff function which associates with each 
pair of pure strategies pi and qj a member aij of X. If the players use mixed 
strategies c = (yl, ..., yk) and d = (&1, ..., 61) respectivly, then the outcome 
is the point Z ,j yyja^ (abbreviated cAd) in X. The preference order >- is 
associated with the first player; the second player has the opposite order, 
i.e., he prefers x to y or is indifferent between them, if and only if y >- x. 
Corresponding to a saddle-point in ordinary matrix games, we here have 
equilibrium points; these are pairs of mixed strategies (c? , d?) which are 
"good against each other" in the sense that c?Ad? is maximal in the set F of 
all points in X of the form cAdo, and minimal in the set G of all points in X of 
the form c'Ad. These equilibrium points have just about all the nice properties 

26 The approach sketched here has not yet been applied to any actual real-life 
inventory problem. But an approach that is similar in spirit has been applied to a real- 
life allocation problem; see R. J. Aumann and J. B. Kruskal, "Assigning Quantitative 
Values to Qualitative Factors in the Naval Electronics Problem," Naval Research 
Logistics Quarterly, 6 (1959), pp. 1-16, and the other papers cited there. We mention 
also that R. G. Davis in his thesis (Princeton, 1960) considered a related approach to 
aspects of an inventory problem. 
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of saddle-points in ordinary matrix games. For example, the interchangea- 
bility property holds: each player has a set of "good" strategies, such that the 
equilibrium points are precisely the pairs of good strategies. Furthermore, a 
player not only achieves "best possible" for himself by playing a good strategy, 
but he also protects himself against loss; if the other player changes his 
strategy, the result will either be another equilibrium point, or a point that 
(from our player's point of view) is actually preferred to an equilibrium point. 
However, there is nothing in this kind of game that corresponds to the 
unique value of ordinary matrix games. 

Do equilibrium points always exist? If so, how can they be calculated? 
These questions are answered by the following theorem. 

THEOREM C: (c?,d?) is an equilibrium point in the matrix game A if and 
only if there is a pair (u, v) of utilities on X such that (c?, d?) is an equilibrium 
point (in the sense of Nash [4]) in the bimatrix game (u(A), - v(A)) .27 

This theorem generalizes a result of Shapley [9]. Shapley considered the 
case in which the underlying mixture space is Rn and the order is either the 
weak or the strong order. He defined "weak" and "strong" equilibrium 
points accordingly, and by exhibiting the utilities explicitly, proved what 
amounts to Theorem C for each of these two special cases separately. Our 
proof (see Section 8) is essentially the same as one of Shapley's two proofs. 
We quote Theorem C here chiefly as an application of our utilities; it serves 
to unify Shapley's two results, includes a far larger class of preference orders, 
and, we believe, exhibits his results in their proper context. 

Theorem C can be extended to n-person games. Each player i has a finite 
set Pi of pure strategies, and an outcome space Xi satisfying the assumptions 
of Section 1. With each n-tuple (p1l, ... ,pn) of pure strategies, there is 
associated an n-tuple (xl, ..., xn) of payoffs, where xi E Xi. We now define 
an n-tuple (cl, ..., cn) of mixed strategies to be an equilibrium point if each 
ci is "good" against the combination of the n - 1 others. The result is that 
(cl, ..., cn) is an equilibrium point if and only if it is a Nash equilibrium point 
for some n-tuple of utilities u1, ..., un on X1, ..., Xn. 

6. THE STRUCTURE OF PARTIALLY ORDERED MIXTURE SPACES 

We first note that as in the von Neumann-Morgenstern theory, if u is a 
utility, then so is xu + f,, where ox > 0 and f is an arbitrary real number. 
Two utilities connected in this way are called equivalent. 

27 I.e., the two-person nonzero sum game whose strategy spaces are the same as in 
the original game, but in which the payoff to (si,tj) is u(ai,) to player 1 and -v(aij) 
to player 2. 
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In this section we will give a constructive characterization of spaces X 
satisfying the assumptions of Section 1. Let us first consider the case in 
which the mixture space involved is Rn. Assumptions (1.1) and (1.2) may 
then be restated as follows: 

(6.1.1) x >_ y implies x + z >-y + z; 

(6.1.2) x t- y and e > 0 imphes cx >-ym; 

(6.2) x >- kz for all positive integers k implies not z > 0 . 

A utility in this context is merely a real function on X which represents the 
order in the sense of (2.2) and (2.3), and which is linear in the ordinary 
(vector-space) sense; that is, there is a vector (ul, . . ., un) and a scalar c, 
such that u(x) = c + In1 X. Different c's yield equivalent utilities; 
we shall usually normalize28 by setting c = 0. We shall denote the vector 
(ul, ..., un) by u, and call it a utility as well. Thus u(x) is the same as the 
inner product ux; no confusion will result. 

For a geometric characterization, we turn to the set S (= Sx) of points in 
Rn that are >- 0. It is not difficult to see that the order is completely deter- 
mined by S. Of more significance than S in the analysis, however, is the set 
T ( Tx) of points in Rn that are >- 0; this may be defined in terms of S by 
T = S\(-S), where\denotes set-theoretic subtraction. From (1. 1) it follows 
that 

(6.3) S is a convex cone,29 

and from (1.2) that 

(6.4) T n (-T)=q5, 

where the bar denotes closure; conversely, if these conditions are satisfied, 
then S defines a partial order. Note that T is also a convex cone, but does 
not contain the origin. A utility is geometrically characterized by an open 
support of T, i.e., an open half-space containing T, and whose bounding 
hyperplane contains the origin; the inner normal to the bounding hyperplane 
provides the utility. 

For the examples of Section 3, T is the open positive orthant for the weak 
order, and for the strong order it is the closed positive orthant minus the 
origin. Orders on Rn "between" the weak and the strong order are obtained 
by choosing T to be between these two; for example, for n = 2 we could 

28 This normalization sets u(O) = 0; there is also a multiplicative parameter that 
could be normalized, but there seems to be no unique natural way in which to do this. 
Note that the "natural" way in which we have fixed the additive parameter depended 
on the existence of an origin; this is a feature of Rn when considered as a vector space, 
but it is not inherent in the mixture space structure of Rn. 

29 A cone is a subset C of Rn such that x e C anid a > 0 imply acx e C. 
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stipulate T = {x: xi > 0, X2 > 0}. Other possibilities for T are open half 
spaces, open half spaces of linear subspaces of Rr, and circular cones. 
Excluded are closed half spaces, or half spaces that are partly open and 
partly closed (such as the open half plane xi > 0 to which has been adjoined 
the positive x2-axis, which would yield the lexicographic order on R2). 

Candidates for S can sometimes be obtained from candidates for T by 
judiciously adding to T points from T; details are omitted. We mention that 
the order is "degenerate" (in the sense of Section 4, paragraph (d)) if and 
only if S is a closed half space of a linear subspace of Rn. 

Up to now we have assumed that the underlying mixture space of X is RI. 
Hausner [2] has proved that any mixture space may be imbedded in a real 
vector space, and from our finite-dimensionality assumption it follows that 
the vector space will be an Rn. It is not difficult to extend the partial order 
as well.30 Thus any partially ordered mixture space X can be described as a 
convex subset of a partially ordered copy of Rn, such that the order on X is 
the restriction to X of the order on Rn. Furthermore, the utilities on X will 
be precisely the restrictions to X of the utilities on this copy of Rn. 

7. DUALITY 

In this section we wish to answer the question: To what extent does the 
set of utilities on X determine the order on X? 

To this end, we introduce the duality notion. The dual of a cone C in Rn is 
defined to be the cone C* consisting of all u e Rn such that ux > 0 for all 
x e C. For example, the open positive orthant and the closed positive 
orthant without the origin are mutually dual, as are Rn and 0, an open half 
space and the ray normal to its bounding hyperplane, and concentric open 
and closed right circular cones (the latter without the origin) whose half- 
angles add to 90?. The cone {x e R2 x1 > 0, X2 > 0} is self-dual. 

In all the above examples C** = C. It is of interest to ask under what 
general conditions this holds. If we calculate C**, we find that it is precisely 
the intersection of the open supports of C. Thus we have 

THEOREM D: A necessary and sufficient condition that C** = C is that C 
be the intersection of its open sujpports. 

The importance of Theorem D lies in the fact that the condition given is 
of wide applicability. Let us call a cone satisfying the condition regular. A 
regular cone must be convex, and unless it is all of Rn, it may not contain the 
origin; but aside from these restrictions, almost any cone "likely to come 

30 Let X c Rn. The cone S is defined to be the smallest convex cone in Rn containing 
all vectors of the form X - y, where x and y are in X and x >- y. 
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up in practice" is regular. Of course the examples above all involve regular 
cones. More generally: Any open cone is regular. If C is a convex cone obtained 
from a closed cone by removing the origin, then C is regular. The set of all x 
satisfying a given set of homogeneous linear inequalities, which may contain 
both weak and strong inequalities, is regular if it contains at least one strong 
inequality (which may, for example, serve only to remove the origin). If C 
is an open circular cone, then any cone between C and C that does not con- 
tain 0 is regular. On the other hand, if we add the positive half of one of the 
axes to the open positive octant in R3, the result is a cone which is not 
regular, though it is convex and does not contain the origin. 

A concept closely related to regularity is Fenchel's "even convexity" [2]; 
a set is said to be evenly convex if it is the intersection of open half spaces. 
Clearly a regular cone is the same thing as an evenly convex cone without 
the origin.3' 

If X is a partially ordered copy of Rn, then the set of all (normalized) 
utilities on X is precisely Tx (where Tx is the set of all points preferred to 0). 
Hence if we know that Tx is regular, we can recover the order from the set 
of all utilities. Thus the set of all utilities on a given X "almost" determines 
the order, and determines it completely if the set of orders under considera- 
tion is suitably restricted. 

Our definition of duality is somewhat different from the ordinary definition, 
in which C* is defined to be the set of all u such that ux < 0 for all x s C. 
Under that definition the necessary and sufficient condition that C** = C 
is that C be the intersection of its closed supports, or equivalently that it be 
convex and closed. 

8. PROOFS AND EXAMPLES 

Characterization of Partially Ordered Euclidean Spaces. We wish to prove 
that when X = Rn, Assumptions (1.1) and (1.2) are equivalent to (6.1.1), 
(6.1.2), and (6.2). The proof is a straightforward computation; some readers 
may prefer to skip straight to the proof of Theorem A. 

First assume (1.1) and (1.2). Then x > y implies (x + z) >- 2(y + z), and 
hence -(x + z) + i 0 _(y + z) + i 0; using the converse form of (1.1), 
we then get x + z >y + z, which completes the proof of (6.1.1). For (6.1.2), 
assume first that e < 1. Then by (1.1), x _y implies cux = cx + (1 - x)0 e 

ocy + (1 - oc)O = ocy. If oc = 1 there is nothing to prove, and if oc > 1 then 
x e y is equivalent to (I/xo) (oxx) + (1 - (1/xo))0 e (I/e) (oxy) + (1 - (1/o))0, 
and the converse form of (1.1) then yields ox >- xoy. To prove (6.2), assume 
x >- kz for all positive integers k. Then from (1.1) it follows that x >- oxz 
for all real numbers o> > 1. Hence from (6.1.2)-which we have already 

31 I am indebted to V. L. Klee for pointing this out. 
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proved-it follows by setting y = 1 /o that yx >- z for all 0 < y < 1. (6.2) 
now follows from (1.2) by setting y = 0. 

Conversely, assume (6.1.1), (6.1.2), and (6.2). If x >-y and 0 < y < 1, 
then by (6.1.1) we get 

x+(- Y) z_y_+ Y)_z 

applying (6.1.2), we deduce 

Y) (I = y(x + y) z /( (1 Y) z = yy + (I - z 

If yx + (I-y)z e yy + (1 -y)z and O < y < 1, then by (6.1.1) we get 

yx=yx+ (1 -y)z+ (-(1 -y)z) >yy+ (1 -y)z+ (-(1 -y)z) = yy 

applying (6.1.2) with oc = 1 /y, we deduce x e y; this completes the proof of 
(1.1). To prove (1.2), assume that yx + (1 - y)y >- z for all 1 > y > 0. 
Applying (6.1.1), we deduce that y(x - y) >- z - y for all 1 > y > 0. Now 
set y = 1/k and apply (6.1.2) with oc = k; it foLlows that x - y >- k(z - y) 
for all positive integers k. Hence by (6.2), z - y not >- 0; hence by (6.1.1), 
znot >-y. 

Proof of Theorem A. We assume that the underlying mixture space of X is 
Rn; this involves no loss of generality because any finite-dimensional 
mixture space can be imbedded in such a mixture space. The proof is by 
induction on n. If n = 1 the order must either be complete or all elements 
are incomparable; in either case the theorem is trivial. Suppose the theorem 
has been proved for all dimensions up to but not including n. If there is an 
element of X other than 0 that is indifferent to 0, then we may "divide out" 
the indifference relation, i.e., consider equivalence classes under indifference; 
this yields a space of lower dimension, to which the induction hypothesis 
applies. We may therefore assume without loss of generality that the order 
on X is pure, so that S = T u {0} (cf. Section 6). Suppose first that the 
closure of T u (- T) is not all of X, and let w be a point not in that closure. 
Let Y be a subspace of X such that every x E X is uniquely of the form 
fiw + y, where f is real and y E Y; for example, take Y to be the orthogonal 
complement of the line LW spanned by w. Define an order on Y by y >- 0 if 
and only if there is a fi such that y + fiw e 0 in X; geometrically, Sy is the 
projection of Sx on Y in the direction of L, Hence Sy is a convex cone, and 
to prove that the order on Y satisfies our assumptions, it remains only to 
establish that Ty and - Ty do not meet. Indeed, suppose y is in their 
intersection. Noting that Ty is the projection of Tx on Y in the direction of 
LW, we deduce that there is a f and sequences {f1,ft2, ... } and{yl,y2 .... } such 
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that y -+y, y + flize >- 0 in X, and 0 >- y + fiw in X. Let ,B be a limit 
point (possibly infinite) of the ,Bi; without loss of generality we may assume 
that it is actually the limit. If fBo = fi, then y + fiw s Tx (- Tx), con- 
trary to (6.4). If fl% = f, but is finite, then 

(y? + iw) -(y + flw) y yi oo W ze p _ A. ~~~+ A k A+ # S 
floo - f 0 l fo 

and hence w is the sum of a term that is either >- 0 or -< 0 (according as 
fl. > f, or i%. < fi) and terms that tend to 0, contrary to the assumption 
that w is not in the closure of Tx u (- Tx). If f%, = + oo, then 

ze Y? + hW? +Y y _' y 
fi3 fli fli' 

and again w is the sum of a term that is >- 0 or -< 0 and terms that tend to 
0, yielding a contradiction. This proves that the order on Y satisfies our 
assumptions, and since Y is of lower dimension than X, we can apply the 
induction hypothesis to construct a utility on Y. This utility can now be 
extended to X by setting u(y + flw) =(y). 

Finally, suppose that the closure of T u (- T) exhausts X. If we could 
show that T is open, then since 0 0 T, it would follow that there must be a 
hyperplane through 0 that does not intersect T (cf. for example [1, p. 29, 
Theorem 7]); the normal to this hyperplane in the direction of the half space 
occupied by T would then provide a utility. It remains therefore to show that 
T is open. Contrariwise, suppose x E T is on the boundary of T. Let H be a 
support hyperplane for T through x. Any neighborhood of x will contain 
points on both sides of H, and therefore in particular it will contain a point 
that is not in T; this point must therefore be in the closure of - T. Therefore 
x itself will be in the closure of the closure of - T, which is the same as -T. 
Therefore -x T. But since x s T, it follows that -x E-T; so -x T n 
(-T), contradicting T n (- T) = 0. 

Proof of Theorem B. The "if" statement foLlows from the definition of 
utility (2.2). To prove the "only if" half, we assume again that the underlying 
space is Rn and that the order is pure. The remainder of the proof follows 
Shapley's proof precisely; it is included only for the sake of completeness. 
Let D be the set of points dominated by members of E, i.e., 

D ={y: a z E such that z e y} . 

D is a polyhedral set; let Dr be the unique r-dimensional face of D whose 
(relative) interior contains x. Let H be a supporting hyperplane for D that 
meets D precisely in Dr. Then if u is the normal to H, we have u(x - y) > 0 
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for all y E D, with equality only if y E Dr. We claim that u(x - y) > 0 
whenever x >- y. If not, there would be a y E Dr such that x >- y. But, 
since x is in the relative interior of Dr, there would also be a z E Dr (of the 
form z = x + 6(x - y), 6 > 0) such that z >- x. This contradicts the 
maximality of x. Thus our claim is substantiated, and it follows that u is 
a utility. 

Theorem Cfollows at once from Theorem B. 

An Infinite-Dimensional Partially Ordered Mixture Space Without a 
Utility. Let X be the set of all infinite sequences x - {X1, X2, ...} of real 
numbers. Define a pure order on X by stipulating that x >- y if and only if 
xi 2 yi for all i, but x =# y (this is the strong order). It is easily verified that 
all the axioms except finite dimensionality are satisfied. Suppose there were 
a utility; set 

=1 U{1,.0,.. 

U2 U{0, 1, 0, } 

From (2.2) it foLlows that all the ui are positive. Set xi = 1 /ui for all i. Then 
for all positive integers k we have 

U(X) = U{X1, X2, * } 

-xJUJ + ..+ XkUk + U{0, ..., O, )Xk+b, ...} >k, 

again by (2.2). Hence u(x) is larger than any positive integer, an absurdity. 
In this example, the dimensionality of X is the cardinality c of the con- 

tinuum. To see this, let B be a maximal independent subset of X consisting 
of dyadic sequences only; B exists by Zorn's lemma. Denote the cardinality 
of B by b. Every dyadic sequence must be a linear combination of one and 
only one finite subset of B; because of independence the coefficients are 
unique, and therefore rational. Since there are c dyadic sequences altogether 
it follows that c < Z' 1 =o bn. Hence c < b. But b < c by definition, and 
hence b = c. It would be interesting to know whether or not there is a 
counter-example in which X has denumerable dimensionality. 

Princeton University and the Hebrew University of Jerusalem. 
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